
fogpy Documentation
Release 1.2.0

Thomas Leppelt

May 12, 2020

Contents

1 Installation instructions 3
1.1 Getting the files and installing them . 3

2 Fogpy usage in a nutshell 5
2.1 Import satellite data first . 5
2.2 Continue with more metadata . 8
2.3 Get hands-on fogpy at daytime . 10
2.4 On a foggy night . 13
2.5 Gimme some ground truth! . 16

3 Algorithms in fogpy 21
3.1 Fogpy algorithms . 21

4 Filters in fogpy 23
4.1 Fogpy filters . 23

5 Low cloud model in fogpy 25
5.1 Low water cloud model . 25

6 Indices and tables 29

Python Module Index 31

Index 33

i

ii

fogpy Documentation, Release 1.2.0

This package provide algorithmns and methods for satellite based detection and nowcasting of fog and low stratus
clouds (FLS).

Related FogPy Version: 1.1.3

It utilizes several functionalities from the pytroll project for weather satellite data processing in Python. The remote
sensing algorithmns are currently implemented for the geostationary Meteosat Second Generation (MSG) satellites.
But it is designed to be easly extendable to support other meteorological satellites in future.

Contents:

Contents 1

http://pytroll.org/

fogpy Documentation, Release 1.2.0

2 Contents

CHAPTER 1

Installation instructions

1.1 Getting the files and installing them

First you need to get the files from github:

cd /path/to/my/source/directory/
git clone https://github.com/m4sth0/fogpy

You can also retreive a tarball from there if you prefer, then run:

tar zxvf tarball.tar.gz

Then you need to install fogpy on you computer:

cd fogpy
python setup.py install [--prefix=/my/custom/installation/directory]

You can also install it in develop mode to make it easier to hack:

python setup.py develop [--prefix=/my/custom/installation/directory]

3

fogpy Documentation, Release 1.2.0

4 Chapter 1. Installation instructions

CHAPTER 2

Fogpy usage in a nutshell

The package uses OOP extensively, to allow higher level metaobject handling.

For this tutorial, we will use a MSG scene for creating different fog products.

2.1 Import satellite data first

We start with the PyTroll package satpy. This package provide all functionalities to import and calibrate a MSG scene
from HRIT files. Therefore you should make sure that mpop is properly configured and all environment variables like
PPP_CONFIG_DIR are set and the HRIT files are in the given search path. For more guidance look up in the ‘satpy‘_
documentation

Note: Make sure satpy is correctly configured!

Ok, let’s get it on:

>>> from satpy import Scene
>>> from glob import glob
>>> filenames = glob("/path/to/seviri/H-000*20131212000*")
>>> msg_scene = Scene(reader="seviri_l1b_hrit", filenames=filenames)
>>> msg_scene.load([10.8])
>>> msg_scene.load(["fog"])

We imported a MSG scene from 12. December 2013 and loaded the 10.8 µm channel and the built-in simple fog
composite into the scene object.

Now we want to look at the IR 10.8 channel:

>>> msg_scene.show(10.8)

5

fogpy Documentation, Release 1.2.0

Everything seems correctly imported. We see a full disk image. So lets see if we can resample it to a central European
region:

>>> eu_scene = msg_scene.resample("eurol")
>>> eu_scene.show(10.8)

6 Chapter 2. Fogpy usage in a nutshell

fogpy Documentation, Release 1.2.0

A lot of clouds are present over central Europe. Let’s test a fog RGB composite to find some low clouds:

>>> eu_scene.show("fog")

2.1. Import satellite data first 7

fogpy Documentation, Release 1.2.0

The reddish and dark colored clouds represent cold and high altitude clouds, whereas the yellow-greenish color over
central and eastern Europe is an indication for low clouds and fog.

2.2 Continue with more metadata

In the next step we want to create a fog and low stratus (FLS) composite for the imported scene. For this we need:

• Seviri L1B data, read by Satpy with the seviri_l1b_hrit reader.

• Cloud microphysical data, read by Satpy with the nwcsaf-geo reader. In principle, CMSAF data could also
be used, but as of May 2019, there is no CM-SAF reader within Satpy.

• A digital elevation model. This can derived from data available from the European Environmental Agency
(EEA). Although this can be read by Satpy using the generic_image reader, the Fogpy composite reads this
as a static image. The path to this image needs to be defined in the Fogpy etc/composites/seviri.yaml
file.

We create a scene in which we load datasets using both the seviri_l1b_hrit and nwcsaf-geo readers. Here
we choose to load all required channels and datasets explicitly:

>>> fn_nwcsaf = glob("/media/nas/x21308/scratch/NWCSAF/*100000Z.nc")
>>> fn_sev = glob("/media/nas/x21308/scratch/SEVIRI/*201904151000*")
>>> sc = Scene(filenames={"seviri_l1b_hrit": fn_sev, "nwcsaf-geo": fn_nwcsaf})

(continues on next page)

8 Chapter 2. Fogpy usage in a nutshell

www.cmsaf.eu
https://www.eea.europa.eu/data-and-maps/data/copernicus-land-monitoring-service-eu-dem

fogpy Documentation, Release 1.2.0

(continued from previous page)

>>> sc.load(["cmic_reff", "IR_108", "IR_087", "cmic_cot", "IR_016", "VIS006",
"IR_120", "VIS008", "cmic_lwp", "IR_039"])

We can now visualise any of those datasets using the regular pytroll visualisation toolkit. Let’s first resample the scene
again:

>>> ls = sc.resample("eurol")

And then inspect the cloud optical thickness product:

>>> from trollimage.xrimage import XRImage
>>> from trollimage.colormap import set3
>>> xrim = XRImage(ls["cmic_cot"])
>>> set3.set_range(0, 100)
>>> xrim.palettize(set3)
>>> xrim.show()

2.2. Continue with more metadata 9

fogpy Documentation, Release 1.2.0

2.3 Get hands-on fogpy at daytime

After we imported all required metadata we can continue with a fogpy composite.

Note: Make sure that the PPP_CONFIG_DIR includes fogpy/etc/ directory!

Fogpy comes with its own etc/composites/seviri.yaml. By setting PPP_CONFIG_DIR=/path/to/
fogpy/etc, Satpy will find the fogpy composites and all fogpy composites can be used directly in Satpy.

Let’s try it with the fls_day composite. This composite determines low clouds and ground fog cells from a satellite
scene. It is limited to daytime because it requires channels in the visible spectrum to be successfully applicable. We
create a fogpy composite for the resampled MSG scene:

>>> ls.load(["fls_day"])

This may take a while to complete. You see that we don’t have to import the fogpy package manually. It’s done
automagically in the background after the satpy configuration.

10 Chapter 2. Fogpy usage in a nutshell

fogpy Documentation, Release 1.2.0

The fls_day composite function calculates a new dataset, that is now available like any other Satpy dataset, such as by
ls["fls_day"] or ls.show("fls_day"). The dataset has two bands:

• Band L is an image of a selected channel (Default is the 10.8 IR channel) where only the detected ground fog
cells are displayed

• Band A is an image for the fog mask

The result image shows the area with potential ground fog calculated by the algorithm, fine. But the remaining areas
are missing. . . maybe a different visualization could be helpful. We can improve the image output by colorize the fog
mask and blending it over an overview composite using trollimage:

>>> ov = satpy.writers.get_enhanced_image(ls["overview"]).convert("RGBA")
>>> A = ls["fls_day"].sel(bands="A")
>>> Ap = (1-A).where(1-A==0, 0.5)
>>> im = XRImage(Ap)
>>> im.stretch()
>>> im.colorize(fogcol)
>>> RGBA = xr.concat([im.data, Ap], dim="bands")
>>> blend = ov.blend(XRImage(RGBA))

2.3. Get hands-on fogpy at daytime 11

fogpy Documentation, Release 1.2.0

Note: Images not yet updated!

Here are some example algorithm results for the given MSG scene. As described above, the different masks are
blendes over the overview RGB composite in yellow, except the right image where the fog RGB is in the background:

Cloud mask Low cloud mask Low cloud mask + Fog RGB

12 Chapter 2. Fogpy usage in a nutshell

fogpy Documentation, Release 1.2.0

It looks like the cloud mask works correctly, except of some missclassified snow pixels in the Alps. But this is not
a problem due to the snow filter which successfully masked them out later in the algorithm. Interestingly low cloud
areas that are found by the algorithm fit quite good to the fog RGB yellowish areas.

2.4 On a foggy night . . .

We saw how daytime fog detection can be realized with the fogpy fls_day composite. But mostly fog occuring during
nighttime. So let’s continue with another composite for nighttime fog detection fls_night:.

Note: Again make sure that the fogpy composites are made available in satpy!

First we need the nighttime MSG scene:

>>> fn_nwcsaf = glob("/media/nas/x21308/scratch/NWCSAF/*100000Z.nc") # FIXME: UPDATE!
>>> fn_sev = glob("/media/nas/x21308/scratch/SEVIRI/*201904151000*") # FIXME: UPDATE!
>>> sc = Scene(filenames={"seviri_l1b_hrit": fn_sev, "nwcsaf-geo": fn_nwcsaf})
>>> sc.load(["IR_108, "IR_039", "night_fog"])

Reproject it to the central European section from above and have a look at the infrared channel:

>>> ls = sc.resample("eurol")
>>> ls.show(10.8)

2.4. On a foggy night . . . 13

fogpy Documentation, Release 1.2.0

We took the same day (12. December 2017) as above. Now we could check whether the low clouds, that are present
at 10 am, already can be seen early in the the morning (4 am) before sun rise.

So let’s look at the nighttime fog RGB product:

>>> ls.show("night_fog")

14 Chapter 2. Fogpy usage in a nutshell

fogpy Documentation, Release 1.2.0

As we see, a lot of greenish-yellow colored pixels are present in the night scene. This is a clear indication for low
clouds and fog. In addition these areas have a similar form and distribution as the low clouds in the daytime scene.
We can conclude that these low clouds should have formed during the night.

So let’s create the fogpy nighttime composite. Fogpy will use the PyTroll package pyorbital for solar zenith angle
calculations, so make sure this one is installed. The nightime composite for the resampled MSG scene is generated in
the same way like the daytime composite with ‘satpy‘_:

>>> ls.load(["fls_night"])
>>> ls.show("fls_night")

2.4. On a foggy night . . . 15

https://github.com/pytroll/pyorbital

fogpy Documentation, Release 1.2.0

It seems, the detected low cloud cells in the composite overestimate the presence of low clouds, if we compare the
RGB product to it. In general, the nighttime algorithm exhibit higher uncertainty for the detection of low clouds than
the daytime approach. Therefore a comparison with weather station data could be useful.

2.5 Gimme some ground truth!

Fogpy features some additional utilities for validation and comparison attempts. This include methods to plot weather
station data from Bufr files over the FLS image results. The Bufr data is thereby processed by the trollbufr PyTroll
package and the images are generated with trollimage. Here we load visibility data from German weather stations for
the nighttime scene:

>>> import os
>>> from fogpy.utils import add_synop

Define search path for bufr file
>>> bufr_dir = '/path/to/bufr/file/'
>>> nbufr_file = "result_{}_synop.bufr".format(ntime.strftime("%Y%m%d%H%M"))
>>> inbufrn = os.path.join(bufr_dir, nbufr_file)

Create station image

(continues on next page)

16 Chapter 2. Fogpy usage in a nutshell

https://github.com/alexmaul/trollbufr
http://trollimage.readthedocs.io/en/latest/

fogpy Documentation, Release 1.2.0

(continued from previous page)

>>> station_nimg = add_synop.add_to_image(nfls_img, tiffarea, ntime, inbufrn,
→˓ptsize=4)
>>> station_nimg.show()

The red dots represent fog reports with visibilities below 1000 meters (compare with legend), whereas green dots
show high visibility situations at ground level. We see that low clouds, classified by the nighttime algorithm not
always correspond to ground fog. Here the station data is a useful addition to distinguish between ground fog and low
stratus.

At daytime we can make the same comparison with station data:

2.5. Gimme some ground truth! 17

fogpy Documentation, Release 1.2.0

>>> bufr_file = "result_{}_synop.bufr".format(time.strftime("%Y%m%d%H%M"))
>>> inbufr = os.path.join(bufr_dir, bufr_file)

Create station image
>>> station_img = add_synop.add_to_image(fls_img, tiffarea, time, inbufr, ptsize=4)
>>> station_img.show()

We see that the low cloud area in Northern Germany has not been classified as ground fog by the algorithm, whereas
the southern part fits quite good to the station data. Furthermore some mountain stations within the area of the ground
fog mask exhibit high visibilities. This difference is induced by the averaged evelation from the DEM, the deviated
lower cloud height and the real altitude of the station which could lie above the expected cloud top. In addition the
low cloud top height assignment can exhibit uncertainty in cases where a elevation based height assignment is not
possible and a fixed temperature gradient approach is applied. These missclassifications could be improved by using
ground station visibility data as algorithm input. The usage of station data as additional filter could refine the ground
fog mask.

Luckily we can use the StationFusionFilter class from fogpy to combine the satellite mask with ground station visibility
data. We use several dataset that had been calculated through out the tour as filter input and plot the filter result:

>>> from fogpy.filters import StationFusionFilter
Define filter input

(continues on next page)

18 Chapter 2. Fogpy usage in a nutshell

fogpy Documentation, Release 1.2.0

(continued from previous page)

>>> flsoutmask = np.array(fogmask.channels[0], dtype=bool)
>>> filterinput = {'ir108': dem_scene[10.8].data,
>>> 'ir039': dem_scene[3.9].data,
>>> 'lowcloudmask': flsoutask,
>>> 'elev': elevation.image_data,
>>> 'bufrfile': inbufr,
>>> 'time': time,
>>> 'area': tiffarea}

Create fusion filter
>>> stationfilter = StationFusionFilter(dem_scene[10.8].data, **filterinput)
>>> stationfilter.apply()
>>> stationfilter.plot_filter()

The data fusion revise the low cloud clusters in Northern Germany and East Europe as ground fog again. The filter
uses ground station data to correct false classification and add missing ground fog cases by utilising a DEM based
interpolation. Furthermore cases under high clouds are also extrapolated by elevation information. This cloud lead to
low cloud confidence levels. For example the fog mask over France and England. The applicatin of this filter should
be limited to a region for which station data is available to achieve a high qualitiy data fusion product. In this case the
area should be cropped to Germany, which can be done by setting the limit attribute to True:

2.5. Gimme some ground truth! 19

fogpy Documentation, Release 1.2.0

>>> filterinput['limit'] = True
Create fusion filter with limited region

>>> stationfilter = StationFusionFilter(dem_scene[10.8].data, **filterinput)
>>> stationfilter.apply()
>>> stationfilter.plot_filter()

The output is now limited automagically to the area for which station data is available.

The above station fusion filter example can be used to code any other filter application in fogpy. The command
sequence more or less looks like the same:

• Prepare filter input

• Instantiate filter class object

• Run the filter

• Enjoy the results

All available filters are listed in the chapter Filters in fogpy. Whereas the algorithms that can be directly applied to
PyTroll Scene objects can be found in the Algorithms in fogpy section.

20 Chapter 2. Fogpy usage in a nutshell

CHAPTER 3

Algorithms in fogpy

The package provide different algorithms for fog and low stratus cloud detection and nowcasting. The implemented
fog algorithms are inherited from a base algorithm class, which defines basic common functionalities for remote
sensing procedures.

The fog and low stratus detection algorithm consists of a sequence of different filter approaches that are successively
applicated to the given satellite images. The sequence of filters and required inputs are shown in the scheme below:

The cloud microphysical products liquid water path (LWP), cloud optical depth (COD) and effective droplet radius
(Reff) can be obtained from the software provided by the Nowcasting Satellite Application Facility (NWCSAF) for
example.

3.1 Fogpy algorithms

21

fogpy Documentation, Release 1.2.0

22 Chapter 3. Algorithms in fogpy

CHAPTER 4

Filters in fogpy

The FLS algorithms are based on filter methods for different meteorlogical phenomena or physical variables. All
implemented filter methods are inherited from a base filter class, which defines basic common filter functionalities.

4.1 Fogpy filters

23

fogpy Documentation, Release 1.2.0

24 Chapter 4. Filters in fogpy

CHAPTER 5

Low cloud model in fogpy

A low water cloud model has been implemented to derive the cloud base height from satellite retrievable variables like
liquid water path, cloud top height and temperature.

5.1 Low water cloud model

This module implements a class for a 1D low water cloud model. The approach can be used to determine fog cloud
base heights by known cloud top height and temperature and cloud liquid water path, e.g. from satellite retrievals. The
implemented approch is based on a publication:

• Detecting ground fog from space – a microphysics-based approach Jan Cermak and Joerg Bendi, 2010

class fogpy.lowwatercloud.CloudLayer(bottom, top, lowcloud, add=True)
This class represent a cloud layer - 1D representation of a cloud section from its vertical profile with defined
extent and homogenius cloud parameters. The layer is defined by the bottom and top height in the cloud profile

classmethod check_temp(temp, unit=’celsius’, debug=False)
Check for plausible range of temperature value for given unit. Convert if required

get_layer_info()

class fogpy.lowwatercloud.HeightBounds(xmax=2000, xmin=-1000)

class fogpy.lowwatercloud.LowWaterCloud(cth=None, ctt=None, cwp=None, cbh=0,
reff=None, cbt=None, upthres=50.0,
lowthres=75.0, thickness=10.0, debug=False,
nodata=-9999)

A class to simulate the water content of a low cloud and calculate its meteorological properties.

Args:

cth (float): Cloud top height in m.
ctt (float): Cloud top temperature in K.
cwp (float): Cloud water path in kg / m^2.
cbh (float): Cloud base height in m.

25

fogpy Documentation, Release 1.2.0

reff (float): Droplet effective radius in m.
cbt (float): Cloud base temperature in K.
upthres (float): Top layer thickness with dry air entrainment in m.
lowthres (float): Bottem layer thickness with ground coupling in m.
thickness (float): Layer thickness in m.
debug (bool): Boolean to activate additional debug output.
nodata (float): Provide a specific Nodata value. Default is: -9999.

Returns: Calibrated cloud base height in m.

cbh

classmethod get_air_pressure(z, elevation=0)
Calculate ambient air pressure for height z [hPa].

get_cloud_base_height(start=0, method=’basin’)
Calculate cloud base height [m].

get_cloud_based_vapour_mixing_ratio(debug=False)

get_effective_radius(z)
The droplet effective radius in [um] for each level is computed on the assumptions that reff retrieved at
3.9 𝜇m is the cloud top value, Cloud base reff is at 1 𝜇m and the intermediate values are scaled linearly in
between.

get_extinct(lwc, reff, rho)
Calculate extingtion coeficient [m-1]

The extinction therefore is a combination of radiation loss by (diffuse) scattering and molecular absorption.
Required are the liquid water content, effective radius and liquid water density TODO: Recheck the unit
of liquid water density g or kg? Should be in g

get_fog_base_height(substitude=False)
This method calculate the fog cloud base height for low clouds with visibilities below 1000 m.

Args:

substitude (bool): Optional argument to substitude with cbh if no fbh could be found.

Returns: Fog base height

classmethod get_incloud_mixing_ratio(z, cth, cbh, lowthres=75.0, upthres=50.0)
Calculate in-cloud mixing ratio for given cloud height parameter.

get_liquid_density(temp, press)
Calculate the liquid water density in [kg m-3].

classmethod get_liquid_mixing_ratio(cb_vmr, vmr, debug=False)
Calculate liquid water mixing ratio for given water vapour mixing ratio in a certain height and the maxi-
mum water vapour mixing ratio at

cloud base condensation level [g/kg].

get_liquid_water_content(z, cth, hrho, lmr, beta, thres, maxlwc=None, debug=False)
Calculate liquid water content [g m-3] by air density and liquid water mixing ratio.

get_liquid_water_path()
Calculate liquid water path for given cloud layers [g m-2].

classmethod get_moist_adiabatic_lapse_temp(z, cth, ctt, convert=False)
Calculate air temperature for height z [K] following a moist adiabatic lapse rate.

Requires values for cloud top height and temperature e.g. known from satellite retrievals.

26 Chapter 5. Low cloud model in fogpy

fogpy Documentation, Release 1.2.0

classmethod get_moist_air_density(pa, pv, temp, empiric=False, debug=False)
Calculate air density for humid air with known pressure and water vapour pressure and temperature.

classmethod get_sat_vapour_pressure(temp, mode=’buck’, convert=False, debug=False)
Calculate satured water vapour pressure for temperature [hPa] using different empirical approaches.

Options: Buck, Magnus

Convert temperatures in K to °C

classmethod get_vapour_mixing_ratio(pa, pv)
Calculate water vapour mixing ratio for given ambient pressure and water vapour pressure. Also usabale
under saturated conditions.

classmethod get_vapour_pressure(z, temp)
Calculate water vapour pressure for height z [hPa].

get_visibility(extinct, contrast=0.02)
Calculate visibility in [m] for given cloud layer. Extinction is directly related to visibility by Koschmieder’s
law.

init_cloud_layers(init_cbh, thickness, overwrite=True)
Method to initialize cloud layers and corresponding parameters. the method needs a initial cloud base
height and thickness in [m].

minimize_cbh(x)
Minimization function for liquid water path.

optimize_cbh(start, method=’basin’, debug=False)
Find best fitting cloud base height by comparing calculated liquid water path with given satellite retrieval.
Minimization with basinhopping or brute force algorithm from python scipy package.

plot_lowcloud(para, xlabel=None, save=None)
Plotting of selected low water cloud parameters.

5.1. Low water cloud model 27

fogpy Documentation, Release 1.2.0

28 Chapter 5. Low cloud model in fogpy

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

29

fogpy Documentation, Release 1.2.0

30 Chapter 6. Indices and tables

Python Module Index

f
fogpy.lowwatercloud, 25

31

fogpy Documentation, Release 1.2.0

32 Python Module Index

Index

C
cbh (fogpy.lowwatercloud.LowWaterCloud attribute), 26
check_temp() (fogpy.lowwatercloud.CloudLayer

class method), 25
CloudLayer (class in fogpy.lowwatercloud), 25

F
fogpy.lowwatercloud (module), 25

G
get_air_pressure()

(fogpy.lowwatercloud.LowWaterCloud class
method), 26

get_cloud_base_height()
(fogpy.lowwatercloud.LowWaterCloud
method), 26

get_cloud_based_vapour_mixing_ratio()
(fogpy.lowwatercloud.LowWaterCloud
method), 26

get_effective_radius()
(fogpy.lowwatercloud.LowWaterCloud
method), 26

get_extinct() (fogpy.lowwatercloud.LowWaterCloud
method), 26

get_fog_base_height()
(fogpy.lowwatercloud.LowWaterCloud
method), 26

get_incloud_mixing_ratio()
(fogpy.lowwatercloud.LowWaterCloud class
method), 26

get_layer_info() (fogpy.lowwatercloud.CloudLayer
method), 25

get_liquid_density()
(fogpy.lowwatercloud.LowWaterCloud
method), 26

get_liquid_mixing_ratio()
(fogpy.lowwatercloud.LowWaterCloud class
method), 26

get_liquid_water_content()

(fogpy.lowwatercloud.LowWaterCloud
method), 26

get_liquid_water_path()
(fogpy.lowwatercloud.LowWaterCloud
method), 26

get_moist_adiabatic_lapse_temp()
(fogpy.lowwatercloud.LowWaterCloud class
method), 26

get_moist_air_density()
(fogpy.lowwatercloud.LowWaterCloud class
method), 26

get_sat_vapour_pressure()
(fogpy.lowwatercloud.LowWaterCloud class
method), 27

get_vapour_mixing_ratio()
(fogpy.lowwatercloud.LowWaterCloud class
method), 27

get_vapour_pressure()
(fogpy.lowwatercloud.LowWaterCloud class
method), 27

get_visibility() (fogpy.lowwatercloud.LowWaterCloud
method), 27

H
HeightBounds (class in fogpy.lowwatercloud), 25

I
init_cloud_layers()

(fogpy.lowwatercloud.LowWaterCloud
method), 27

L
LowWaterCloud (class in fogpy.lowwatercloud), 25

M
minimize_cbh() (fogpy.lowwatercloud.LowWaterCloud

method), 27

33

fogpy Documentation, Release 1.2.0

O
optimize_cbh() (fogpy.lowwatercloud.LowWaterCloud

method), 27

P
plot_lowcloud() (fogpy.lowwatercloud.LowWaterCloud

method), 27

34 Index

	Installation instructions
	Getting the files and installing them

	Fogpy usage in a nutshell
	Import satellite data first
	Continue with more metadata
	Get hands-on fogpy at daytime
	On a foggy night …
	Gimme some ground truth!

	Algorithms in fogpy
	Fogpy algorithms

	Filters in fogpy
	Fogpy filters

	Low cloud model in fogpy
	Low water cloud model

	Indices and tables
	Python Module Index
	Index

